Меню

Автоматизированные системы управления судовых энергетических установок

Автоматизация СЭУ, СЭЭС и судовых технических средств

Автоматизация на судах

Автоматизация судов — это процесс, при котором функции управления судном и его оборудованием, ранее выполнявшиеся человеком, передаются приборам и техническим устройствам. Автоматизация судовождения обеспечивает безопасность рейсов судов. При автоматизации судовых энергетических установок повышается надежность и экономичность работы оборудования, увеличивается производительность и улучшаются условия труда плавсостава, сокращается его численность.

Различают частичную и комплексную автоматизацию. В 40—50-х гг. началась автоматизация отдельных механизмов на судах.

Работы в области комплексной автоматизации отечественных судов были начаты в 60-х годах. На судах типа «Новгород» было реализовано шесть различных программ автоматизации, что дало возможность накопить значительный опыт эксплуатации автоматизированных судов. Полученные результаты отражены в Правилах Регистра.

Надзору на судне подлежат системы автоматизации главных двигателей, котельной установки, судовой электростанции, системы компрессоров сжатого воздуха, осушительной системы, вспомогательных механизмов и др.

Межремонтный ресурс автоматизированного оборудования должен быть не менее 25 тыс. ч, ежегодная наработка оборудования без подрегулировок и наладок должна составлять не менее 5 тыс. ч.

Элементы и устройства автоматизации должны безотказно работать при длительном крене судна до 22,5 ° и длительном дифференте до 10°, а также при бортовой качке до 45 ° с периодами 5—17 сек.

Все оборудование автоматизации конструируют, или выбирают по принципу «выход из строя в безопасную сторону».

На современных автоматизированных судах общее число средств так называемой «периферийной автоматики» достигает 500—700 ед. Практика эксплуатации показывает, что именно эта аппаратура наименее надежна. Многочисленные датчики и сигнализаторы имеют ресурсные характеристики в 2—2,5 раза ниже, чем гарантированный ресурс самих комплексных систем автоматизации. Характеристики надежности комплексных систем автоматизации, поставляемых на флот, гарантируются разработчиками без учета входящих в системы датчиков. При гарантированном техническом ресурсе автоматизированного комплекса, равном 25 тыс. ч, и суммарной наработке на отказ не менее 5 тыс. ч до 75 % входящих в него датчиков имеют технический ресурс 5—10 тыс. ч и фактическую наработку не более 2—3 тыс.

Первостепенными задачами на современном этапе развития автоматизации являются: повышение надежности элементной базы; организация технического обслуживания систем автоматизации в судовых условиях и в порту; подготовка кадров, способных технически грамотно эксплуатировать системы автоматизации и выполнять необходимые профилактические мероприятия.

Подходы к автоматизации судна

Как и на всех, вначале основной целью внедрения автоматизации было сокращение численности машинной команды, а экономическая целесообразность применения автоматизации определялась возможностью ее окупаемости в результате экономии затрат при уменьшении численности экипажа, то в настоящее время на первом плане стоит задача повышения безопасности эксплуатации судов.

Практика эксплуатации современных автоматизированных судов выявила ряд конкретных преимуществ, получаемых от применения автоматизации. К примеру численность машинной вахты сокращается с 3-5 чел. до 1 чел., а общая численность судового экипажа снижается с 55-60 чел. до 30-36 чел.

Ряд основных принципов автоматизации, которыми в настоящее время руководствуются в мировой практике, а именно:

— объем автоматизации должен быть достаточным для обеспечения нормальной эксплуатации установки экипажем определенной численности;

— автоматизировать следует наиболее ответственные с точки зрения безопасности эксплуатации процессы, а также наиболее трудоемкие и регулярно повторяющиеся операции;

— должна быть обеспечена автоматическая защита от любой неисправности, могущей повлечь за собой аварию;

— комплектация ЦПУ приборами управления и контроля должна исключать необходимость ухода вахтенного из ЦПУ непосредственно в машинное отделение для осуществления операций управления и контроля;

— надежность оборудования энергетической установки, а также средств автоматизации и контроля должна быть настолько высокой, чтобы обеспечить нормальную эксплуатацию установки силами экипажа, численность которого соответствовала бы принятому уровню автоматизации.

Автоматизация СЭУ, СЭЭС и судовых технических средств

Применение дистанционного автоматизированного управления главным двигателем непосредственно из рулевой рубки исключает промежуточные звенья (машинный телеграф, механик), что влечет за собой сокращение числа маневров;

По данным исследований более устойчивая работа главных и вспомогательных механизмов на оптимальных режимах благодаря автоматизации повышает КПД СЭУ примерно на 2%.

Автоматизация СЭЭС также имеет преимущества. Например, автоматизация электростанции в случае обесточивания сети обеспечивает автоматическое восстановление ее нормальной работы примерно за 25-40 с, без остановки энергетической установки и потери судном хода, в то время как для выполнения вручную всех операций по пуску ранее работавших механизмов может потребоваться до 30 мин с потерей хода, что в определенных условиях может привести к аварийной обстановке, что особенно не желательно для военных кораблей.

Эксплуатационные преимущества, даваемые автоматизацией, включающие уменьшение износов и нарушений в работе механизмов, в том числе из-за ошибок обслуживающего персонала, по мнению отдельных специалистов, повышают межремонтный период эксплуатации судна на 6-10%.

Помимо технико-экономических выгод, выражающихся в конкретных цифрах, автоматизация энергетических установок дает значительное число важных косвенных выгод, не поддающихся расчету, например: сосредоточение в рулевой рубке в руках судоводителя всех операций по управлению режимами работы главного двигателя обеспечивает возможность более быстрой и точной отработки принятых решений, что очень важно при маневрировании в сложных навигационных условиях; автоматизация управления и контроля за работой оборудования в значительной степени позволяет исключить ошибки обслуживающего персонала с их возможными последствиями и дает возможность выявить нарушения в работе механизмов и систем в начальной стадии их возникновения, что также существенно повышает надежность и безопасность эксплуатации энергетических установок;

Читайте также:  Установка системы видеонаблюдения это модернизация

Корабли проекта 1135 изначально являются полностью автоматизированными. и предусматривают следующие средства контроля:

1) система дистанционного автоматизированного управления (ДАУ) главным двигателем из рулевой рубки или из изолированного центрального поста управления в машинном отделении’ (ЦПУ), иногда с обоих постов;

2) автоматическая система, обеспечивающая работу вспомогательной энергетической установки и подачу электропитания и пара всем потребителям на судне;

3) система контроля и сигнализации о неисправностях в работе механизмов и отклонении параметров от нормы;

4) автоматика, обеспечивающая нормальное функционирование постоянно работающих бытовых и общесудовых систем и обслуживающих их механизмов в машинном отделении;

5) системы сигнализации, обеспечивающие безопасное состояние машинного отделения (противопожарная сигнализация и сигнализация об опасном уровне воды). Основным элементом автоматизации энергетической установки является централизация управления и контроля за работой оборудования, позволяющая осуществлять из ЦПУ пуск и остановку механизмов, изменять режим их работы, контролировать необходимые параметры, своевременно обнаруживать отклонение параметров от нормы, дистанционно применять меры по восстановлению нормального режима работы.

Автоматизация навигации

Автоматизация навигации призвана решать 3 основные задачи:

1) прием и обработку навигационной информации, непрерывное определение географических координат местонахождения судна с выдачей данных по наивыгоднейшему пути на индикацию, регистрацию и автопрокладчик, а также удержание судна на курсе;

2) предупреждение столкновения судов путем обнаружения и автоматического сопровождения нескольких объектов и автоматического проигрывания необходимых для безопасного расхождения маневров.

3) прямое назначение сторожевых судов — обнаружение вражеских подводных лодок.

Эти задачи в мировой практике решаются с помощью оборудованных ЭВМ навигационных систем, использующих данные радиолокационных, радионавигационных и навигационных спутниковых систем.

Применение систем, решающих первую задачу, позволяет получить экономию путевого времени за счет оптимального выбора курса, учитывающего снос и дрейф судна, обусловленные наличием течений и метеорологическими условиями.

Дата добавления: 2018-06-01 ; просмотров: 945 ;

источник

Конспект лекции «Системы управления двигателями. Классы автоматизации СЭУ»

Как организовать дистанционное обучение во время карантина?

Системы ДАУ. Посты управления

Автоматизация судов — это процесс, при котором функции управления судном и его оборудованием, ранее выполнявшиеся человеком, передаются приборам и техническим устройствам. Автоматизация судовождения обеспечивает безопасность рейсов судов. При комплексной автоматизации судовых энергетических установок повышается надежность и экономичность работы оборудования, увеличивается производительность и улучшаются условия труда плавсостава, сокращается его численность.

Объектами автоматизации на судне являются: 1) главные двигатели, 2) котельные установки, 3) судовая электростанция, 4) компрессоры сжатого воздуха, 5) балластные, осушительные системы, 6) реф. установки и системы кондиционирования, вспомогательные механизмы и др.

Эффективность использования судовых энергетических установок (СЭУ) в большей степени определяется уровнем автоматизации и качеством управления различными режимами их работы.

В зависимости от уровня автоматизации судну присваивается знак автоматизации.

Знак A3 распространяется на суда с главными двигателями мощностью до 1500 кВт и упрощенной электростанцией вследствие использования электрогенераторов с приводом от главного двигателя.

Суда со знаком A2 в символе класса должны быть оборудованы системами автоматизации в объеме, позволяющем производить дистанционное автоматизированное управление с мостика главными механизмами и движителями, обеспечивающими требуемое маневрирование судном. Предусматриваемое оборудование автоматизации при всех условиях плавания, включая маневрирование, должно обеспечивать такой же уровень безопасности судна, как и на судах с вахтой в машинных помещениях. Должно быть предусмотрено дистанционное управление из центрального поста управления (ЦПУ) главными и вспомогательными механизмами,

Все оборудование, устанавливаемое в машинных помещениях, должно быть приспособленным к работе в условиях без вахтенного обслуживания.

По согласованию с Регистром допускается выполнение отдельных операций (пополнение цистерн, очистка фильтров и т. п.) с местных постов управления, если эти операции будут выполняться с определенной периодичностью (не чаще 1 раза за 12 ч).

Знак автоматизации А1 присваивается судну в том случае, если энергетическую установку можно нормально эксплуатировать без постоянной вахты как в машинном отделении, так и в ЦПУ. При эксплуатации судна со знаком А1 изменение режима работы энергетической установки задается с мостика общей командой.

Для управления скоростью и направлением движения судна служит система дистанционного автоматизированного управления (ДАУ). Дистанционное автоматизированное управление — это управление, с помощью которого можно задавать желаемый режим работы механизма, воздействуя на элемент управления (например, регулирующий рычаг или рукоятку). Система управления в дальнейшем выполняет самостоятельно все промежуточные действия;

Судовые средства автоматизации

В составе судовых средств автоматизации находятся:

панели управления и контроля,

операторские станции, датчики,

разнообразные программируемые средства для работы с информацией (получение, обработка и передача по интерфейсным каналам),

основные и резервные источники питания,

Читайте также:  Виртуальная система ubuntu установка

устройства преобразования и коммутации сигналов.

Для управления судовой силовой установкой на судне организованы посты управления:

Ходовой мостик, включая крылья

А
варийное управление

Требования Регистра к ДАУ

1.Управление ГД должно быть полностью автоматизирова­но и осуществляться одной рукояткой без выдержки вре­мени.

2.Ручное управление должно совмещаться с рукояткой ма­шинного телеграфа, но система питания машинного теле­графа должна быть отдельной от системы питания ДАУ.

3.Система ДАУ должна обладать высокой точностью задания оборотов (±1,5%).

4.Система должна обеспечивать резервное управление из ма­шинного отделения, которое может быть автоматическим или ручным дистанционным.

5.Переход на такой вид управления должен происходить не более чем за 10 сек.

6.Переключение постов управления осуществляется из ма­шинного отделения.

7.Помимо основного поста управления в рулевой рубке мо­гут устанавливаться дублирующие посты управления на крыльях мостика.

8.Система ДАУ должна обладать консерватизмом, т.е. в слу­чае нарушения питания заданный режим сохраняется на время не менее 5 минут.

9.При исчезновении питания должно автоматически вклю­чаться резервное (аварийное) питание.

источник

Автоматизированные систему управления судовыми техническими средствами

В настоящее время в ОАО «Концерн «НПО АВРОРА» разработана автоматизирована система управления технологическими процессами (АСУ ТП) «АВРОЛОГ-СК», обеспечивающая автоматизацию систем и оборудования скоростных судов, таких как крыльевые устройства, устройства управления и стабилизации параметров движения, главная энергетическая установка, вспомогательная энергетическая установка, радиооборудование и навигационное оборудование, электрооборудование, вспомогательные механизмы и технические средства энергетических установок, общесудовые системы и противопожарные системы и средства [10, 11].

Примером успешной реализации указанных выше принципов является система «АРГУС-Д» производства ОАО ПКО «ТЕПЛООБМЕННИК», которая является цифровой системой управления дизельными двигателями и устанавливается на судах со средним водоизмещением (код доступа: https://teploobmennik.ru/ru/2009-06-05-12-28-21/marine).

Круг задач, решаемых АСУ ТП судна, чрезвычайно широк и разнообразен. Состав конкретной АСУ ТП определяется, прежде всего, типом и целевым назначением судна, классом его автоматизации и специальными требованиями заказчика (в т. ч. необходимость соответствия требованиям определенных классификационных обществ и международным морским конвенциям) [10, 11]:

1. АСУ навигации и судовождения.

3. АСУ судовыми техническими средствами (АСУ ТС), в частности:

· Подсистема управления энергетическими процессами МО и общесудовыми системами.

· Управление ГД и ВРШ и их диагностика.

· Управление электроэнергетической установкой.

· Управление вспомогательными механизмами.

· Управление автономным оборудованием (котлоагрегатами, опреснительной установкой, компрессором и т.п.).

· Управление общесудовыми системами.

· Сигнализация о наличии воды в помещениях.

· Управление средствами борьбы за живучесть судна.

· Аварийно-предупредительная сигнализация (АПС).

Рисунок 1 — Структурная схема системы контроля и управления «Аргус-Д»

судна на воздушной подушке, оснащенного двигателями 56ЧН16/17 [12].

Система «АРГУС-Д»реализующая эти принципыи предназначенная для защиты, управления режимом и реверсом двух главных двигателей — дизелей типа М533, контроля и аварийно-предупредительной сигнализации главных двигателей и систем, обеспечивающих их работу для судна на воздушной каверне «Меркурий» прошла межведомственные и государственные испытания в составе головного быстроходного таможенного катера «Меркурий» в г. Новороссийске и в г. Владивостоке, прошла процедуру сертификации Регистра Морского Судоходства России и продолжает успешно эксплуатироваться.

Аналогичные системы широко используются в зарубежной практике судостроения и эксплуатации флота. Так, интегрированная компьютерная сеть балкера“EDELWEISS” (код доступаhttp://www.shippingexplorer.net/ru/ship/edelweiss/126533) позволяет обеспечить мониторинг:

· параметров главного двигателя;

· параметров вспомогательного котла;

· параметров вспомогательных дизелей электростанции;

· электрические параметры текущего состояния генераторов;

· контроль уровней топлива, смазочного масла, воды в топливных, расходных, водяных танках и танках питьевой воды;

· контроль различных напряжений судовой сети, а также состояния напряжения судовых аккумуляторных батарей;

· контроль работы механизмов обеспечивающих работу ГД (топливных, масляных насосов, насосов охлаждающей воды 1-го и 2-го контуров, турбины) и т.д.

Очевидно, что наиболее важную информацию об эффективности и надежности СЭУ может дать системы контроля параметров, регулирования и диагностирования судовых дизельных двигателей.

Так, в настоящее время активно внедряются системы электронного управления судовыми двигателями, включающими подсистемы регулирования компрессоров агрегатов наддува, рециркуляции отработавших газов, топливоподачей, фаз газораспределения, температурой наддувочного воздуха, охлаждающей жидкости и моторного масла.

Современные системы технического диагностирования (СТД) сокращают время поиска неисправностей двигателя в десятки раз. Так, внедрение СТД в практику эксплуатации судовых двигателей внутреннего сгорания способствует росту экономичности 2-3%, увеличению ресурса 20-50 %, снижению расхода запасных частей на 10-15% [16].

Поэтому наряду с диагностированием судовых дизелей по термогазодинамическим параметрам с использованием, в основном, штатных контрольно-измерительных приборов, используются дополнительные электронные системы, которые включают датчики для индицирования рабочего процесса, измерения крутящего момента и расхода топлива, показателей системы топливоподачи, параметров и свойств смазочного масла, давлений и расхода картерных газов, токсичности отработавших газов, уровня вибраций и шума и др.

Например, для четырехтактных дизельных двигателей фирмой Caterpillar предложена система электронного контроля и мониторинга, приведенная на рисунке 3.

Рисунок 2 — Судовой дизель С12 6L130/150 производства фирмы Caterpiller, оснащенный системой электронного контроля и мониторинга

Рисунок 3 — Схема типовых компонентов электронного системы

Читайте также:  Нюансы установки системы на mac mini server

контроля и мониторинга дизельного двигателя (информация Caterpillar).

Электронная система двигателя включает датчики:

· уровня охлаждающей жидкости и ее температуры;

· давления и температуры топлива;

· давления воздуха на выходе из компрессора агрегата наддува;

· температуры воздуха на входе в компрессор агрегата наддува;

· частоты вращения коленчатого вала,

а также микропроцессор и другие электронные компоненты.

Аналогичные системы разработаны практически зарубежными всеми ведущими производителями судовых дизельных двигателей.

Так, например, фирма MTU разработала систему «Monitoring and remote control for MTU ship propulsion systems», фирма Mitsui систему «Multipurpose controller for electronic control engine & electronic control units».

В последние годы все шире используются на морском флоте так называемые интеллектуальные дизельные двигатели, разработанные ТНК Wartsila (двигатели серии Sulzer RT-flex) и MAN Diesel & Turbo (двигатели серии ME), обеспечивающие электронное управление топливоподачей (Common Rail), фазами газораспределения, лубрикаторной системой смазки и др.

Рисунок 4 — Система электронного управления топливоподачей типа Common Rail малооборотных крейцкопфных дизельных двигателей серии Sulzer RT-flex (информация Wartsila).

Рисунок 5 — Система электронного управления малооборотных

крейцкопфных дизельных двигателей серии ME-B (информация MAN Diesel & Turbo).

Таким образом, комплекс технических и программыных средств АСУ СТС – важнейшая и неотъемлемая составная часть судовой энергетической установки, который наряду с главными и вспомогательными ее элементами (дизельными двигателями, котлами, теплообменными аппаратами, валопроводами и т.д.), определяет ее эффективность и надежность.

CALS-технологии

CALS-технологии (англ. Continuous Acquisition and Lifecycle Support — непрерывная информационная поддержка поставок и жизненного цикла изделий), или ИПИ (информационная поддержка процессов жизненного цикла изделий) — подход к проектированию и производству высокотехнологичной и наукоёмкой продукции, заключающийся в использовании компьютерной техники и информационных технологий на всех стадиях жизненного цикла изделия.

В широком смысле слова CALS — это методология создания единого информационного пространства жизненного цикла промышленной продукции, обеспечивающего взаимодействие всех промышленных автоматизированных систем. В этом смысле предметом CALS являются методы и средства как взаимодействия разных АС и их подсистем, так и сами АС с учетом всех видов их обеспечения.

Практически синонимом CALS в этом смысле становится термин PLM (Product Lifecycle Management), широко используемый в последнее время ведущими производителями АС.

CALS– это технология интеграции различных АС со своими лингвистическим, информационным, программным, математическим, методическим, техническим и организационным видами обеспечения.

За счет непрерывной информационной поддержки обеспечиваются единообразные способы управления процессами и взаимодействия всех участников этого цикла: заказчиков продукции, поставщиков/производителей продукции, эксплуатационного и ремонтного персонала. Информационная поддержка реализуется в соответствии с требованиями системы международных стандартов, регламентирующих правила указанного взаимодействия преимущественно посредством электронного обмена данными.

Применение CALS-технологий позволяет существенно сократить объёмы проектных работ, так как описания многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в унифицированных форматах данных сетевых серверов, доступных любому пользователю технологий CALS. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации, специализации проектных организаций и т. п. Предполагается, что успех на рынке сложной технической продукции будет немыслим вне технологий CALS.

Развитие CALS-технологий должно привести к появлению так называемых виртуальных производств, в которых процесс создания спецификаций с информацией для программно управляемого технологического оборудования, достаточной для изготовления изделия, может быть распределён во времени и пространстве между многими организационно-автономными проектными бюро.

Среди достижений CALS-технологий — лёгкость распространения передовых проектных решений, возможность многократного воспроизведения частей проекта в новых разработках и др.

Построение открытых распределённых автоматизированных систем для проектирования и управления в промышленности составляет основу современных CALS-технологий.

Главная проблема их построения — обеспечение единообразного описания и интерпретации данных, независимо от места и времени их получения в общей системе, имеющей масштабы вплоть до глобальных.

Структура проектной, технологической и эксплуатационной документации, языки её представления должны быть стандартизированными. Тогда становится реальной успешная работа над общим проектом разных коллективов, разделённых во времени и пространстве и использующих разные CAD/CAM/CAE-системы.

Одна и та же конструкторская документация может быть использована многократно в разных проектах, а одна и та же технологическая документация — адаптирована к разным производственным условиям, что позволяет существенно сократить и удешевить общий цикл проектирования и производства. Кроме того, упрощается эксплуатация систем.

Для обеспечения информационной интеграции CALS использует стандарты IGES и STEP в качестве форматов данных. В CALS входят также стандарты электронного обмена данными, электронной технической документации и руководства для усовершенствования процессов.

Работа по созданию национальных CALS-стандартов в России проводится под эгидой Росстандарта: с этой целью создан Технический комитет ТК459 «Информационная поддержка жизненного цикла изделий», силами которого разработан ряд стандартов серии ГОСТ Р ИСО 10303, являющихся аутентичными переводами соответствующих международных стандартов STEP.

PLM технологии

PLM-система (англ. product lifecycle management) — прикладное программное обеспечение для управления жизненным циклом продукции.

источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *