Меню

Элементы автоматики холодильных установок

Автоматизация холодильных установок

Автоматизация производственных процессов является важнейшим условием технического прогресса любой отрасли промышленности.

Цель автоматизации холодильных установок — замена ручного труда, точное поддержание заданных параметров, предотвращение аварий, увеличение срока службы оборудования, сокращение затрат, повышение культуры производства.

Эксплуатация автоматизированных холодильных установок обходится дешевле, так как отпадает необходимость в части обслуживающего персонала, занятого ручными операциями по пуску, регулированию и остановке холодильного оборудования, визуальному наблюдению за работой машин и аппаратов.

Устройства автоматизации могут выполнять как отдельные операции: контроль, сигнализация, включение и выключение исполнительных механизмов, так и совокупность этих операций: автоматическая защита и регулирование.

Любая операция, осуществляемая машинистом современных холодильных установок, поддается автоматизации. Однако не все операции целесообразно автоматизировать.

Автоматизация процессов регулирования и защиты необходима в тех случаях, когда эти процессы требуют затрат ручного труда и когда машинист не может обеспечить точное регулирование и надежную защиту. Очень важно также автоматизировать работы во вредных и взрывоопасных помещениях.

Абсорбционные и пароэжекторные холодильные машины ввиду отсутствия движущихся механизмов (кроме насосов) легче поддаются полной автоматизации, чем крупные компрессионные, которые требуют непрерывного наблюдения и квалифицированного обслуживания.

Крупные и средние холодильные установки снабжают частичной автоматизацией, при которой автоматически регулируется лишь часть процессов. Чаще такие холодильные установки работают на полуавтоматическом режиме, при котором остановка машины происходит автоматически, а пуск вручную.

Основными частями любой автоматической системы являются: измерительный (чувствительный) элемент, или датчик, воспринимающий изменение регулируемой величины; регулирующий орган, изменяющий по сигналу измерительного элемента подачу вещества или энергии в регулируемый объект, и передаточное устройство, соединяющее датчик с исполнительным механизмом. Измерительный элемент снабжен обычно приспособлением для настройки на заданное значение регулируемой величины.

Приборы автоматического управления должны включать или выключать компрессоры и насосы при изменениях нагрузки. Компрессорами управляют с помощью реле температуры, останавливающих компрессоры при понижении температуры рассола или давления в испарителях ниже заданного предела и включающих их при повышении температуры в испарителе. Иногда холодильные машины включают с помощью реле времени, которому задают время включения компрессора.

Приборы автоматического регулирования предназначены для поддержания заданных параметров работы холодильной установки: температуры, давления, уровня. Благодаря плавному регулированию холодопроизводительности можно поддерживать заданную температуру хладоносителя при понижении тепловой нагрузки. Достигается оно следующими путями:
установкой регуляторов давления «до себя», поддерживающих постоянное давление в испарителях и дросселирующих пары перед компрессором;
установкой регуляторов давления «после себя», перепускающих часть паров из нагнетательной линии во всасывающую. За счет этого часть паров, которая могла бы поступить в компрессор из испарителя, отсекается и холодопроизводительность установки падает;
подключением дополнительного вредного пространства в поршневом компрессоре, уменьшающего отсос паров хладагента из испарителя.

Регулирование подачи хладагента в испаритель преследует две цели: обеспечение безопасной работы компрессора, путем защиты его от гидравлического удара и уменьшение или увеличение холодопроизводительности установки.

Автоматическая сигнализация оповещает о изменениях режима, которые могут повлечь за собой срабатывание элементов автоматической защиты, и извещает о включении и выключении машин, магнитных вентилей, задвижек и приборов. Примером сигнального прибора служит дистанционный указатель уровня ДУ, соединяемый с исполнительными механизмами — соленоидными вентилями или звуковыми сигнальными устройствами — ревунами.

Автоматическая защита позволяет избегать опасных для холодильной машины последствий чрезмерного повышения давления нагнетания, понижения давления и температуры испарения, нарушений режима работы смазочных устройств и т. д.

Для защиты установок от аварийного режима в схемах автоматизации предусматривают приборы, отключающие холодильные агрегаты при резких нарушениях режима работы.

Вынос вторичных показаний приборов контроля и измерения (термометров, манометров, расходомеров, указателей уровня) на центральный щит, где расположена и регулирующая станция, позволяет управлять работой холодильной установки централизованно. Часть измерений записывают самопишущие приборы (термометры, манометры).

Комплексная автоматизация холодильной установки состоит в оснащении ее устройствами автоматического управления, регулирования и защиты, а также средствами контроля и сигнализации, обеспечивающими исправную работу этих устройств.

Контрольные вопросы
1. Что дает автоматизация холодильных установок?

2. Назовите основные элементы автоматизации.

3. Из каких элементов состоит система автоматического регулирования?

4. Расскажите об устройстве ТРВ,
170
5. Объясните конструкцию и принцип работы соленоидного вентиля.

6. Как работают мембранные пневматические клапаны?

7. Назовите способы регулирования холодопроизводительности.

8. Расскажите о работе реле давления.

9. Расскажите об устройстве РУКЦ.

10. Что вы знаете о водорегулирующем вентиле?

11. Перечислите способы защиты компрессора от опасности гидравлического удара.

12. Объясните устройство и принцип работы дистанционного указателя уровня.

13. Какие виды автоматической сигнализации вы знаете?

14. Проследите работу приборов автоматизации в схеме двухступенчатой холодильной установки.

15. Расскажите об особенностях автоматизации холодильных турбоагрегатов.

16. Расскажите о схемах автоматизации отдельных узлов аммиачных холодильных установок.

источник

Основные приборы автоматики холодильных установок

Реле температуры. Изменение климатических условий, различные условия в ходу и на стоянке влияют на теплопритоки в рефрижераторные трюмы и охлаждаемые камеры судов. Резко изменяются теплопритоки при открытии люков рефрижераторных трюмов и дверей камер во время загрузки. В связи с этим в судовых холодильных машинах и установках предусмотрена возможность изменения их холодопроизводительности с целью поддержания требуемой температуры в охлаждаемых помещениях. Чаще всего в современных судовых холодильных установках заданный температурный режим в охлаждаемом помещении регулируется автоматически путем пуска и остановки компрессора с помощью манометрического реле температуры (термореле) — двухпозиционного прибора с электрическим контактным выходом, предназначенным для включения и выключения электрической цепи уп­равления работой установки. Термочувствительная система реле заполнена легкокипящим веществом, давление которого изменяется в зависимости от температуры. Изменение давления воспринимается силовым элементом, связанным с контактной цепью. В ряде случаев такие реле применяют для защиты от нарушения нормальных режимов работы. Как и во всяком двухпозиционном приборе, температура регулируется в некотором интервале. Этот интервал называют диапазоном регулирования. Кроме того как и любой прибор данного типа, реле температуры обладает зоной нечувствительности, или дифференциалом, определяемым как разность между температурами замыкания и размыкания контактов.

Термореле типа ТРДК-3 (рис.15.) состоит из термочувствительной системы, передаточно-настроечного механизма, механизма настройки дифференциала и контрольного устройства.

Рис.15. Схема термореле ТРДК-3

Термочувствительная система состоит из термобаллона 12, соединенного капиллярной трубкой с камерой сильфона 11, образующих герметичную систему, заполненную насыщенным паром хладона. Вещество, находящееся в термочувствительной системе, принимает температуру окружающей среды, и в системе создается соответствующее температуре насыщенного пара хладона давление. Сила от этого давления, действующего на сильфон 11 тер­мочувствительной системы, уравновешена через шток сильфона и угловой рычаг 8 силой упругой деформации цилиндрической вин­товой пружины 2, присоединенной к левому концу рычага. Другой конец пружины соединен с обоймой, в которую ввернут винт ре­гулирования диапазона. Вращением винта изменяют натяжение пружины, настраивая реле на требуемую температуру размыкания контактов. Натяжение пружи­ны зависит от перемещения обоймы, положение последней от­мечается стрелкой, устанавливае­мой против соответствующего деления шкалы 3, показывающей температуру, при которой кон­такты размыкаются.

Угловой рычаг 8 имеет плас­тинчатую пружину 7. Ее верх­ний конец проходит через про­резь в штоке 4 микропереключа­теля 5. Дифференциал (то есть раз­ность температур замыкания и размыкания контактов) регулиру­ют винтом 6, упирающимся в плоскую пружину 7 и изменяю­щим ее положение относительно рычага 8, т. е. ее свободный ход в прорези штока 4. На рычаге 8 около винта 6 имеется шкала дифференциала, на которой на­несены буквы «М» и «Б», обозначающие настройку дифференциала: «Малый» или «Большой». К рычагу 8 прикреплена пружина 10, замедляющая движение рычага при дифференциале, превышающем 8°С. Винт, расположен­ный над пружиной 10, служит для изменения ее натяжения при увеличении дифференциала до 20°С. Обычно, если дифференциал настраивают на 2—4 С С. натяжение пружины 10 не меняют. Про­вода системы термореле подсоединяют к выводам 9.

Термореле работает следующим образом: при повышении тем­пературы регулируемой среды (воздуха в камере или рассола) сверх заданной температуры, которой соответствует положение стрелки на шкале 3, рычаг 8 под действием силы от давления в термочувствительной системе поворачивается против часовой стрел­ки. При этом пластинчатая пружина 7, прикрепленная к рычагу, потянет за собой шток 4 микропереключателя 5 и контакты замк­нутся.

При понижении температуры регулируемой среды давление в термочувствительной системе уменьшается и рычаг 8 под действи­ем силы пружины 2 начнет поворачиваться по часовой стрелке. Когда температура регулируемой среды будет равна заданной на шкале, рычаг своим правым концом нажмет на шток микропере­ключателя и контакты разомкнутся.

При настройке дифференциала на метку «М», т. е. на 2°С. температура замыкания контактов равна температуре заданного диапазона +2°С. Контакты замкнутся, когда конец пластинчатой пружины 7 дойдет до левой стенки выреза штока 4 микропереключателя.

Используемые в холодильных установках приборы автоматического регулирования давления различны по принципу дейст­вия и применяются: а) для регулирования холодопроизводительности компрессора путем его пуска и остановки; б) для автоматического поддержания давления всасы­вания; в) для автоматического регулирования давления конден­сации; г) для поддержания давления в испарителе и регулиро­вания подачи хладагента.

Реле давления. Оно служит для защиты холодильной маши­ны от недопустимо низкого давления в испарителе, высокого дав­ления в конденсаторе и для автоматического двухпозиционного регулирования холодопроизводительности компрессора.

Рассмотрим, как производится регулирование холодопроизво­дительности компрессора с помощью реле низкого давления (прессостата). Холодопроизводительность судовой холодильной установки выбирают всегда больше величины теплопритоков в охлаждаемые помещения. При работе установки в этих услови­ях понижается температура воздуха в охлаждаемом трюме. По­нижается также интенсивность кипения хладагента в испаритель­ных батареях, что приводит к уменьшению перегрева паров хладона на выходе из испарителя. В результате снижения перегрева паров хладона уменьшается его подача в испаритель и понижа­ется давление в последнем и на линии всасывания компрес­сора.

При понижении давления всасывания и, следовательно, тем­пературы кипения хладона до нижнего предела регулирования реле выключит компрессор. После остановки компрессора вслед­ствие теплопритоков в охлаждаемое помещение температура воз­духа в нем будет повышаться, что приведет к повышению дав­ления и температуры кипения хладона в испарителе. По дости­жении давления верхнего предела регулирования реле снова включит компрессор в работу. Одновременно с поддержанием по­стоянного давления кипения хладона путем периодического пу­ска и остановки компрессора реле низкого давления предотвра­щает замерзание хладоносителя в испарителе в результате по­нижения температуры кипения.

Наряду с реле низкого давления применяют и реле высокого давления (маноконтроллер). Оно служит для поддержания по­стоянного давления в конденсаторе и одновременно является прибором защиты, так как при увеличении давления нагнетания, выше допустимого выключает компрессор. Часто реле низкого и высокого давления объединяют в общем» корпусе.

Отечественная промышленность выпускает целый ряд реле давлений, в том числе корабельного типа, одноблочные низкого РД-1К-01 (прессостат) и высокого РД-2К-03 (маноконтроллер) давления, а также двухблочные РД-3-01 и РД-3-02.

В двухблочном реле давления РД-3-01, состоящем из прессостата и маноконтроллера (рис.16), измерительные элементы ре­ле воздействуют на одно контактное устройство.

Реле низкого давления состоит из сильфона 18, размещенно­го в кожухе 17, штока 19, жестко связанного с подвижным кон­цом сильфона и воздействующего на передаточный механизм, включающий в себя два шарнирно соединенных рычага 6, 20. Эти рычаги связаны с пружиной 7, имеющей регулировочный винт 16. Давление срабатывания реле устанавливают по шкале путем изменения затяжки пружины 5 винтом 4.

Рис. 16. Схема двухблочного реле давления

В состав диффе­ренциального механизма входят рычаг 21, пружина 22, регулиро­вочный винт 1 и шкала 2, по которой настраивают механизм. На передаточный механизм реле низкого давления с одной стороны действует сила давления пара на линии всасывания, а с другой стороны — сила затяжки пружин 5 и 22.

При повышении давления всасывания увеличивается сила, действующая на сильфон, в результате чего он сжимается. Вслед­ствие перемещения штока 19 рычаги 6 к 20 при сжатии сильфона повернутся по направлению часовой стрелки, а рычаг 21—про­тив нее. Когда давление всасывания достигнет значения, на ко­торое настроен блок реле низкого давления по шкале 3, рычаг 6 своим концом, воздействуя на коммутирующее устройство 8, за­мкнет контакты и включит компрессор. При понижении давле­ния всасывания система рычагов реле, перемещаясь в обратном направлении, по достижении установленного давления разомкнет контакты коммутирующего устройства 8 и выключит компрес­сор. Блок низкого давления имеет диапазон настройки 0,03— —0,4 МПа, а дифференциал—0,03—0,25 МПа.

Реле высокого давления состоит из сильфона 15, размещен­ного в кожухе 14, штока 13, воздействующего на передаточный механизм блока высокого давления, включающий в себя ры­чаг 12 и пружину 11, предназначенную для настройки блока с помощью винта 9. Настройка блока на необходимое давление производится по шкале 10.

При повышении давления нагнетания сильфон 15 сжимается и перемещает шток 13 вверх, сжимая пружину 11, повернет ры­чаг 12 против направления часовой стрелки. По достижении ус­тановленного на шкале 10 давления рычаг 12, преодолев сопро­тивление пружины 11, отожмет рычаг 6 от коммутирующего устройства 8 и его контакты разомкнутся, компрессор остано­вится. Диапазон настройки блока высокого давления 0,7 —1,9 МПа, дифференциал—0,2 МПа. Терморегулирующие клапаны. В зависимости от тепловой нагрузки на испаритель изменя­ется и масса подаваемого в него хладагента

Заполнение испари­теля хладагентом обычно регулируется путем поддержания оп­ределенного перегрева его пара на выходе из испарителя с по­мощью регулятора перегрева, называемого терморегулирующим клапаном (ТРК).

Предназначен терморегулирующий клапан для дросселиро­вания хладагента и автоматического регулирования подачи его в испаритель. Такой клапан обеспечивает автоматическую пода­чу жидкого хладагента в испаритель в зависимости от перегре­ва пара на выходе из него изменением сечения клапана для про­хода хладагента.

Терморегулирующий клапан мембранного типа ТРКК-0,5 изображен на рис.17.

Термочувствительная система ТРК состоит из термобаллона 8, капиллярной трубки 3, крышки 4 и мембраны 2, припаянной к латунному

Рис. 17. Терморегулирующий клапан ТРКК-0,5

корпусу 9. Термобаллон 8 прикреплен к трубке на выходе из испарителя. Корпус 9 имеет два штуцера для присоединения к жидкост­ной линии и испарителю с помощью ниппелей 1, 7. На входе в ТРК установлен сетчатый фильтр 12. Регулирующая часть ТРК состоит из пружины 13 и регулировочного винта 11. Роль клапана ТРК выполняет игла 14, укрепленная в держателе 6. Полость под мембраной сообщается четырьмя отверстиями со стороной низкого давления.

В трех из них находятся толкатели 5, переда­ющие усилие от мембраны к держателю, через четвертое пары хладона при наличии давления в испарителе поступают под мембрану. К ТРК подается жидкий хладон с давлением конден­сации, который, проходя через игольчатый клапан, дросселиру­ется и поступает в испаритель. Давление пара в термочувстви­тельной системе, воздействуя на мембрану 2, стремится отжать игольчатый клапан 14 от седла и увеличить проходное сечение для хладона. В то же время давление кипения в испарителе, воздействующее с внутренней стороны мембраны 2, и усилие пру­жины 13 стремятся прижать иглу клапана к седлу.

При повыше­нии температуры перегрева пара силы, действующие сверху на мембрану, будут больше сил, действующих снизу, при этом мем­брана прогнется вниз и толкатели 5, сжимая пружину 13, увели­чат открытие клапана 14. С понижением температуры перегрева давление над мембраной уменьшается и пружина 13 прикрыва­ет клапан 14, уменьшая поступление хладона в испаритель. При остановке компрессора давление в испарителе повышается, дей­ствующие на мембрану силы выравниваются, и клапан под воз­действием пружины закрывается. Настройку ТРВ производят из­менением натяжения пружины 13 с помощью винта 11, имеющего левую резьбу. При вращении винта против часовой стрелки пру­жина затягивается и перегрев увеличивается. После регулировки ТРВ винт 11 закрывается колпачком 10. Диапазон настройки пере­грева начала открытия клапана 2—10°С.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8832 — | 8359 — или читать все.

источник

Принципы автоматизации холодильных установок

Тема «КИП и автоматика холодильной машины»

Цель:Изучить устройство и принцип действия контрольно-измерительных приборов и приборов автоматики холодильных машин вагонов

Рекомендуемая литература:

1. Холодильные машины и установки конддиционированяе воздуха. Пигарев В.Е., Архипов П.Е. М., Маршрут, 2003.

2. Обучающая контролирующая программа «Кондиционирование воздуха в пассажирском вагоне».

План лекции:

1. Принципы автоматизации холодильных установок.

2. Основные понятия об автоматическом регулировании

3. Классификация и основные элементы

4. Регуляторы заполнения испарителя хладагентом.

Принципы автоматизации холодильных установок

Параметры окружающей среды — температура, влажность, направление и сила ветра, осадки, солнечная радиация непрерывно изменяются в течение суток, а также вследствие быстрого перемещения вагона. Соответственно изменяется и тепловая нагрузка на вагон. Чтобы в этих условиях поддерживать стабильные параметры воздуха внутри вагона, необходимо непрерывно изменять производительность системы охлаждения (летом) или отопления (зимой), а если это необходимо, то и производительность системы вентиляции. Следовательно, как бы совершенны ни были сами по себе системы вентиляции, отопления, охлаждения и электроснабжения и как бы хорошо ни были согласованы их параметры между собой и с тепловыми нагрузками на вагон, установка кондиционирования воздуха не сможет обеспечить комфортных условий в вагоне, если её управление не будет автоматизировано, а холодильная машина обеспечивать требуемую тепловую обработку скоропортящегося груза и поддерживавать заданный температурный режим охлаждаемого помещения. На рефрижераторном подвижном составе применяются холодильные установки, автоматизированные полностью или частично. Степень автоматизации холодильной установки выбирается в зависимости от ее конструкции, размеров и условий эксплуатации. В полностью автоматизированных установках пуск, отключение машин и регулирование холодопроизводительности осуществляются автоматически без вмешательства обслуживающего персонала. Такими установками оборудованы АРВ и секции ZB-5. Для полной автоматизации требуются большие первоначальные затраты и последующие расходы на обслуживание сложных аппаратов и приборов. Однако полная автоматизация холодильных установок АРВ позволила отказаться от сопровождения вагонов в пути следования обслуживающим персоналом и перейти на периодическое их техническое обслуживание на специализированных пунктах (ПТО АРВ).

При эксплуатации частично автоматизированных холодильных установок необходимо постоянное дежурство обслуживающего персонала. Наличие персонала позволяет отказаться от автоматизации включения и выключения холодильной машины, процесса оттаивания воздухоохладителя и др. В результате достигается значительное снижение первоначальных затрат. Защитная же автоматика в таких машинах должна предусматриваться в полном объеме, как и для полностью автоматизированной установки.

Из частично автоматизированных установок условно выделяют полуавтоматизированные установки, в которых включение и выключение оборудования выполняет вручную механик, а поддержание установленного режима работы осуществляют приборы автоматики. К полуавтоматизированным холодильным установкам относятся установки 5- вагонной секции БМЗ.

Автоматизированные холодильные установки всегда работают в оптимальном режиме. Это позволяет сократить время достижения требуемой температуры в грузовом помещении, увеличить за счет этого межремонтные сроки эксплуатации оборудования и снизить расход электроэнергии. Автоматизированная холодильная установка точнее поддерживает заданный температурный режим в охлаждаемом помещении, чего невозможно достигнуть при ручном регулировании. Это позволяет сохранить качество перевозимых грузов и уменьшить их потери при транспортировке. Система автоматизации надежно защищает холодильную установку от опасных режимов работы, увеличивая срок ее службы и обеспечивая безопасность для обслуживающего персонала. Автоматизация повышает культуру производства, улучшает и облегчает условия труда обслуживающего персонала. Практически обязанности поездной бригады сводятся к периодическим осмотрам и проверкам режима работы оборудования и к устранению выявленных неисправностей. Естественно, системы автоматики различны. Применительно к системам автоматики установки кондиционирования воздуха можно классифицировать по трем признакам: по регулируемым параметрам воздуха: по температуре или по влажности, или по обоим этим параметрам, т.е. по теплосодержанию; по характеру процесса обработки воздуха: мокрые камеры увлажнения и осушки с непосредственным разбрызгиванием и фильт189 рацией паровоздушной смеси, или камеры со смачиванием поверхности и также непосредственным тепломассообменом, или камеры с применением теплообмена через холодную (или горячую) стенку, охлаждаемую холодной водой или рассолом (нагреваемую горячей водой или рассолом), или камеры с воздухоохладителями непосредственного охлаждения, или камеры с твердыми или жидкими влагопоглотителями — адсорбентами; по схеме обработки воздуха: прямоточные камеры (без использования рециркуляции), или камеры с постоянной или переменной величиной первичной рециркуляции, или камеры с двойной рециркуляцией постоянной или переменной. Специальное устройство для регулирования влажности (специальная осушка воздуха осуществляется более глубоким его охлаждением, чем необходимо для поддержания температурного режима с последующим подогревом) в вагонных установках кондиционирования воздуха не применяется. Летом, когда требуется осушка воздуха, она выполняется одновременно с процессом его охлаждения в воздухоохладителе. Зимой, когда необходимо увлажнение воздуха, оно осуществляется за счет влаговыделения пассажиров. Таким образом, по первому признаку процесс автоматического регулирования работы вагонных установок кондиционирования является наиболее простым и сводится к поддержанию температуры в помещениях вагона в заданных пределах. Мокрые камеры, твердые и жидкие адсорбенты, теплообмен с помощью водяного или рассольного охлаждения в пассажирских вагонах не применяются. Из этого следует, что и по второму признаку системы автоматики вагонных кондиционеров довольно просты. Ни переменная, ни тем более двойная рециркуляция как постоянная, так и переменная, в вагонах не применяется. Наличие рециркуляции с постоянным соотношением наружного и рециркуляционного воздуха усложняет лишь систему вентиляции, не внося каких-либо из-менений в систему автоматического управления. Таким образом, и по третьему признаку, а значит, и в целом системы автоматики установок кондиционирования пассажирских вагонов по сравнению с системами автоматики других кондиционеров как комфортных, так и технологических, являются относительно простыми. Для поддержания температуры в охлаждаемом помещении в заданном интервале приходится регулировать холодопроизводительность установки, рассчитанную на максимальную потребность в холоде. Регулиро-вание может быть плавным или позиционным (ступенчатым).

Плавное регулирование можно выполнить: плавным изменением частоты вращения вала компрессора; перепуском (байлансированием) пара из нагнетательной линии во всасывающую; изменением рабочего объема компрессора (в винтовых компрессорах); открытием всасывающего клапана на части хода поршня и др. Многие из перечисленных выше способов применяются редко из-за сложности их конструкционного осуществления или из-за значительных энергетических потерь.

Позиционное регулирование можно выполнять изменением коэффициента рабочего времени, т.е. изменением продолжительности работы холодильной установки за цикл. Этот способ широко применяется в системах с большой тепловой аккумулирующей способностью. Позиционное регулирование выполняется также ступенчатым изменением частоты вращения коленчатого вала компрессора, используя многоскоростные электродвигатели. Частоту вращения вала электродвигателя изменяют переключением полюсов статора. На рефрижераторном подвижном составе применяется регулирование холодопроизводительности изменением коэффициента рабочего времени. Цикличная работа холодильной установки достигается периодическими ее включениями и выключениями. Отношение времени работы холодильной установки р к общей продолжительности цикла называется коэффициентом рабочего времени: b = р/.

Читайте также:  Охрана труда на предприятии холодильных установок

Коэффициент рабочего времени можно также определить как отношение теплопритоков в охлаждаемое помещение Qт к холодопроизводительности установки Q0, т.е. b = Qт/Q0.

Температуру в охлаждаемом помещении рефрижераторных вагонов обычно регулируют периодическими включениями и отключениями холодильной установки с помощью двухпозиционного автоматического прибора — термостата (реле температуры). При цикличной работе температура в охлаждаемом помещении не остается постоянной, а изменяется в определенных пределах, которые зависят от настройки дифференциала термостата. При увеличении дифференциала продолжительность цикла и пределы колебания температуры увеличиваются. Когда температура в охлаждаемом помещении достигнет верхнего установленного предела, термостат включит холодильную установку. После того как температура в охлаждаемом помещении достигнет нижнего предела, термостат подает электрический импульс на отключение установки. При увеличении теплопритоков в вагон продолжительность работы установки повышается.

об автоматическом регулировании

Система автоматического управления — это совокупность объекта управления и управляющего устройства, осуществляющих какой-нибудь процесс полностью или частично без вмешательства обслуживающего персонала. Объект управления — комплекс технических элементов, выполняющих основную технологическую задачу — характеризуется значениями некоторых величин на его входе и выходе. Если в качестве объекта управления рассматривать рефрижераторный вагон, то величиной на выходе будет температура в грузовом помещении tваг, а величиной на входе — холодопроизводительность холодильной машины Q0. Величину на выходе, которую требуется поддерживать в определенном интервале, называют регулируемым параметром и обозначают X. Величина на входе объекта — это параметр, с помощью которого управляют значением величины на выходе. Внешнее воздействие на объект управления, вызывающее отклонение регулируемого параметра от исходного значения Х, называется нагрузкой. В данном случае это будут теплопритоки в вагон Qн. Действительное значение регулируемого параметра X под воздействием нагрузки Qн отклоняется от заданного значения X0. Такое отклонение называется рассогласованием: Х=Х – X. Воздействие на объект, которое уменьшает рассогласование Х, является регулирующим воздействием. В нашем примере это будет холодопроизводительность машины Q0. Если Q0 = Qн, то Х = 0, а регулируемый параметр не изменяется: Х0 const.

Устройство, воспринимающее рассогласование АХ и воздействующее на объект для уменьшения рассогласования, называется автоматическим регулятором, или просто регулятором.

Объект и регулятор образуют систему автоматического регулирования (рис. 1).

Рис. 1. Система автоматического регулирования

Регулирование может выполняться по нагрузке и рассогласованию. В первом случае регулятор

воспринимает изменение нагрузки и на столько же изменяет регулирующее воздействие, поддерживая равенство Q0 = Qн. Однако проще следить за отклонением регулируемого параметра Х, т.е. изменять регулирующее воздействие Q0 в зависимости от значения Х.

Системы автоматизации различаются по своему назначению: управления, сигнализации, защиты, регулирования и комбинированные. Между собой они отличаются составом элементов и связями между, ними. Структурная схема автоматической системы определяет, из каких звеньев она состоит. Например, в систему автоматического регулирования входят объект регулирования и автоматический регулятор, состоящий из нескольких элементов — чувствительного элемента, задающего устройства, элемента сравнения, регулирующего органа и т.д. На рис. 2 показана простая одноконтурная система автоматического регулирования, широко применяющаяся при автоматизации холодильных установок. Работа объекта характеризуется параметром X на выходе, по которому ведется регулирование. На объект воздействует внешняя нагрузка Qн. Управление осуществляется регулирующим воздействием Q0. Автоматический регулятор должен так изменять величину Q0, чтобы значение X. соответствовало заданному Х. В системе имеются цепи прямой и обратной связи. Цепь прямой связи служит для формирования и передачи к объекту регулирующего воздействия Q0; по цепи обратной связи поступает информация о ходе процесса. В цепь прямой связи входят усилитель (У), исполнительный механизм (ИМ) и регулирующий орган (РО). В цепь обратной связи включен чувствительный элемент (ЧЭ).

Рис. 2. Структурная схема автоматического регулирования

Обе цепи замыкаются элементом сравнения (ЭС). В регуляторе могут не применяться отдельные элементы (усилитель, исполнительный механизм). Некоторые детали могут выполнять функции нескольких элементов.

Система работает следующим образом. Чувствительным элементом регулятор воспринимает регулируемый параметр X и преобразует его в величину Х1, удобную для дальнейшей передачи.

Эта преобразованная величина поступает в элемент сравнения, на другой вход которого подается сигнал Х2, представляющий собой задание регулятору от устройства 3. В элементе сравнения производится операция вычитания, в результате которой получается рассогласование Х = XХ0.

Сигнал Х заставляет работать остальные элементы схемы. В усилителе его мощность повышается до Х3 и воздействует на исполнительный механизм, который преобразует этот сигнал в удобный для использования вид энергии X4 и изменяет положение регулирующего органа. В результате изменяется поток энергии или вещества, подводимого к объекту, т.е. изменяется регулирующее воздействие.

По взятому для примера рефрижераторному вагону можно проследить за взаимодействием элементов структурной схемы (рис. 1 и 2).

Температуру в вагоне X воспринимает термочувствительная система термостата, преобразует ее в давление Х1 и воздействует на пружину термостата ЭС, отрегулированную на определенное усилие сжатия винтом задающего устройства 3. При повышении температуры в вагоне tваг в результате теплопритоков Qн увеличивается рассогласование X.

При определенном значении tваг замыкаются контакты термостата, включающие электрическую систему управления холодильной машиной У, которая получает энергию Е от внешнего источника. Исполнительные механизмы ИМ электрической системы включают холодильную машину РО, которая воздействует величиной Qн на объект. Структурные схемы других автоматических устройств можно получить из рассмотренной схемы. Сигнализирующая система отличается от системы регулирования тем, что в ней нет исполнительного механизма. Цепь прямой связи разрывается, и сигнал Х3 подается обслуживающему персоналу (звонок, включение сигнальной лампы), который и должен произвести регулирование. В системе автоматической защиты вместо исполнительного механизма и регулирующего органа имеется устройство управления, которое отключает холодильную установку. В системах сигнализации и защиты сигнал Х3 изменяется скачкообразно, когда величина X достигает заданного значения. Автоматические регуляторы классифицируются по назначению: регуляторы давления, температуры, уровня и т.д. Они различаются конструкцией чувствительного элемента. Регуляторы бывают прямого и непрямого действия. Если мощность сигнала рассогласования достаточна для воздействия на регулирующий орган, регулятор считается прямодействующим. В регуляторах непрямого действия для привода регулирующего органа используется внешний источник энергии Е (электрический, пневматический, гидравлический, комбинированный), подводимой через усилитель мощности У.

В зависимости от способа воздействия на объект различают регуляторы плавного и позиционного (релейного) действия. В регуляторах плавного действия регулирующий орган может занять любое положение в пределах между максимальным и минимальным. У позиционных регуляторов регулирующий орган может занимать два или несколько определенных положений. По типу задающего элемента регуляторы бывают стабилизирующие, программные, следящие, оптимизирующие. Стабилизирующие регуляторы поддерживают регулируемую величину на постоянном заданном уровне. Программные регуляторы изменяют регулируемую величину по заранее намеченной программе, следящие — в зависимости от изменений какого-нибудь внешнего параметра, Оптимизирующие регуляторы, анализируя внешние параметры, обеспечивают оптимальное ведение процесса. В холодильных установках чаще применяются стабилизирующие регуляторы.

Система регулирования согласовывает характеристики отдельных элементов машины при изменений их холодопроизводительности.

Характеристики представляют собой зависимости холодопроизводительности, расхода энергии на работу компрессора и охлаждение конденсатора от внешних условий, т.е. от температуры окружающей среды. Они позволяют установить взаимную связь параметров компрессора, испарителя и конденсатора. Построение характеристик проводят по уравнениям теплового баланса системы «холодильная машина — охлаждаемое помещение» и энергетическим соотношениям, описывающим работу основных элементов машины с учетом изменения по времени параметров хладагента и окружающей среды. При этом балансовые и энергетические соотношения представляют в функции температуры охлаждаемого объекта (температуры кипения хладагента) и температуры окружающей среды (температуры конденсации хладагента).

Процесс регулирования машины на требуемый режим охлаждения или на заданный температурный режим теоретически может быть реализован количественным или качественным способом. Первый предусматривает изменение расхода хладагента через испаритель, второй — изменение его параметров. Однако температура охлаждаемого объекта определяется температурой кипения хладагента, которая самоустанавливается в зависимости от холодопроизводительности компрессора, испарителя и конденсатора. Поэтому процесс регулирования определяет не только баланс холодопроизводительности компрессора Qoк и испарителя Qои, но и температурный уровень отвода или подвода теплоты. Следовательно, регулирование паровой компрессорной машины представляет собой комбинированный процесс, сочетающий количественный и качественный способы.

Исполнительным органом системы регулирования (регулятором холодопроизводительности) служит дроссельный вентиль. Рабочий режим машины, который соответствует точке пересечения характеристик компрессора и испарителя Qoк = Qои, обеспечивают изменением проходного сечения вентиля. Схема согласования характеристик основных элементов машины при некотором постоянном значении температуры окружающей среды приведена на рис. 3.

Характеристика испарителя Qoк =f(T0) (T0 — температура кипения хладагента) отвечает изменению теплопритоков охлаждаемого помещения, характеристика компрессора Qок = f(T0) — регулированию его производительности, расходная характеристика дроссельного вентиля Qдв= f(T0) устанавливает степень его закрытия или открытия. Характеристики перечисленных элементов машины при изменении режима ее работы показаны штриховыми линиями. Точка А определяет рабочую точку системы «машина — охлаждаемое помещение» как объекта регулирования при переходе с одного режима работы на другой. При этом точка А′соответствует рабочему режиму в процессе регулирования компрессора, а точка А′′ при изменении характеристики испарителя. Регулирование холодопроизводительности машины с поршневым компрессором осуществляют плавным или ступенчатым (позиционным) регулированием его производительности. В машинах малой и средней мощности получили распространение следующие способы плавного регулирования с помощью внешних или встроенных конструктивных устройств: перепуск хладагента со стороны нагнетания на всасывание (балансирование), который осуществляют регулирующими вентилями, управляемыми от датчика давления или температуры; дросселирование на всасывании с переводом компрессора на работу при пониженном давлении всасывания; изменение объема мертвого пространства подключением к нему дополнительного внешнего объема; изменение частоты вращения вала компрессора.

Рис. 3. Характеристики основных элементов холодильной машины

Ступенчатое регулирование в машинах малой и средней холодопроизводительности в основном выполняют способом «пуск-остановка» с предельной частотой циклов до 5-6 в 1 ч; для многоступенчатых компрессоров эффективно используют отключение отдельных цилиндров путем отжатия всасывающих клапанов с помощью механических толкателей. Управление движением толкателей производят гидравлическими, пневматическими или электромагнитными приводами. Внедряется система электронного регулирования производительности с воздействием на всасывающие клапаны электромагнитного поля.

Примером ступенчатого пропорционального регулирования является регулирование температуры воздуха в вагоне летом, когда с увеличением теплопритока в вагон увеличивается холодопроизводительность холодильной установки (увеличиваются частоты вращения вала компрессора или включается большее количество его цилиндров). В этом случае импульсом, сигнализирующим необходимость увеличения холодопроизводительности, является дальнейшее повышение температуры воздуха в вагоне.

Пример пропорционального плавного регулирования — регулирование температуры воздуха в вагоне зимой, когда с увеличением теплопотерь вагона плавно увеличивается температура воды в котле водяного отопления. В этом случае импульсом, сигнализирующим необходимость повышения температуры воды в котле, является изменение температуры наружного воздуха. Наиболее совершенным, но и наиболее сложным видом пропорционального регулирования является изодромное регулирование, основанное на применении чувствительной и гибкой обратной связи, благодаря которой регулируемый параметр изменяется в очень узких пределах или даже держится на практически постоянном уровне. Первоначально изодромное регулирование применялось для обеспечения постоянной скорости вращения деталей машин, откуда и получило свое название (по-гречески изо — постоянный, равный; дромос — бег, скорость). В настоящее время оно применяется в самых различных процессах, например, для автоматического вождения морских кораблей по заданному курсу.

Читайте также:  Нормативные документы по эксплуатации холодильных установок

Вследствие сложности аппаратуры, трудных условий ее работы при вибрации и тряске, а главное из-за отсутствия практической необходимости в предельно точном регулировании температуры воздуха, в установках кондиционирования воздуха вагонов изодромное регулирование не применяется.

При выборе способа регулирования необходимо учитывать начальные и эксплуатационные затраты, технологичность и надежность конструкции. Для оценки энергетической эффективности системы регулирования используют отношение холодопроизводительности компрессора при заданной степени регулирования к номинальной: =qop/qон = f(T). Показатели сравнительной эффективности основных способов регулирования производительности поршневых компрессоров приведены на рис. 4. Для способов пуск-остановка (линия 1) и отжатие впускных клапанов (линия 2) характерны малые энергетические потери и практическая независимость от режима работы. При дросселировании на всасывании (линия 3) наблюдается резкое падение эффективности с ростом температуры кипения хладагента, поэтому этот способ применяют в компрессорах, которые работают в узком диапазоне давлений кипения. Балансирование (линия 4) — наименее эффективный вариант регулирования, так как он связан с потерями энергии сжатого пара при его перепуске, повышением температуры всасывания хладагента, а следовательно, и температуры нагнетания; энергетические потери при этом способе соответствуют степени уменьшения холодопроизводительности машины.

В холодильных машинах с винтовыми компрессорами используют следующие способы регулирования холодопроизводительности: дросселирование на всасывании, балансирование, изменение частоты вращения вала, золотниковой системой.

Дросселирование обеспечивают автоматическим перекрытием дроссельного клапана, установленного на входе в компрессор. Эффективность этого способа ограничена снижением производительности до 70% от номинальной; при более глубоком дросселировании существенно снижается экономичность.

Рис. 4. Энергетическая эффективность основных способов регулирования производительности поршневых компрессоров

Балансирование осуществляют перепуском части хладагента через безопасный клапан со стороны нагнетания на всасывание.

Применение такого способа обычно ограничивают компрессорами сухого сжатия.

Наиболее экономичное регулирование путем отключения в процессе сжатия части объема рабочих полостей обеспечивает золотниковая система. Несмотря на усложнение конструкции компрессора, такая система открывает дополнительные схемные возможности усовершенствования паровых холодильных машин.

Автоматизация работы холодильной машины позволяет с высокой точностью поддерживать требуемый уровень параметров процесса охлаждения, отвечающий оптимальному технологическому режиму, а также частично или полностью исключить участие обслуживающего персонала в эксплуатации холодильного оборудования.

В паровых компрессорных машинах объектами автоматизации являются теплообменные аппараты, в частности степень заполнения испарителя жидким хладагентом и давление процесса конденсации. Объективным и технически наиболее удобным показателем, отражающим степень заполнения испарителя, служит перегрев пара

на выходе из него. Действительно, когда часть теплопередающей поверхности испарителя обеспечивает перегрев паров хладагента, уменьшение его подачи приводит к снижению степени заполнения, а следовательно, к росту перегрева. При этом повышение температуры перегрева сверх расчетного уровня ухудшает энергетические показатели машины и надежность ее работы. Подача хладагента в испаритель в количестве, превышающем возможности процесса теплопередачи, связана с переполнением испарителя и снижением перегрева. Последнее приводит к снижению холодопроизводительности машины, а в ряде случаев к работе компрессора на влажном паре, что может привести к гидравлическому удару.

Системы автоматического регулирования степени заполнения испарителя по перегреву паров хладагента выполняют плавными и позиционными (обычно двухступенчатыми). В качестве автоматического регулирования в плавных системах широко используют терморегулирующие вентили (ТРВ), в которых величину перегрева паров хладагента получают в виде разности между температурой пара, выходящего из испарителя, и температурой кипения хладагента. Терморегулирующие вентили, обеспечивающие процесс дросселирования хладагента от давления конденсации до давления испарения, устанавливают на линии между конденсатором и испарителем.

Принципиальная схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ, используемая в хладоновых машинах РПС, приведена на рис. 5. Чувствительный элемент измерительной головки 1 терморегулирующего вентиля, выполненный в виде мембраны 2 или сильфона, находится под воздействием разности давлений перегретого пара, соответствующего температуре перегрева, и хладагента на выходе из испарителя 7, отвечающего температуре кипения. Перегретый пар, который образуется в термосистеме, состоящей из термобаллона 6 и капилляра 3, поступает в пространство над мембраной; пространство под мембраной связывают уравнительной трубкой 4 с всасывающей линией компрессора 5. При этом уравнительную трубку присоединяют к всасывающей линии в месте установки термобаллона. В некоторых конструкциях в термобаллон вводят твердый поглотитель и всю термосистему заполняют газом.

Перемещение штока 12 в результате деформации чувствительного элемента при изменении температуры перегрева обеспечивает открытие или закрытие запорного клапана 11, регулирующего поступление жидкого хладагента из конденсатора в испаритель по линии 10. С помощью регулировочного винта 8 изменяют силу затяжки пружины 9 и, следовательно, необходимую величину температуры перегрева. В процессе автоматического регулирования ТРВ должен обеспечить оптимальный уровень заполнения испарителя и устойчивость системы во всем требуемом диапазоне изменения холодопроизводительности, что особенно важно для холодильных машин рефрижераторного подвижного состава. Практически устойчивая работа системы ТРВ начинается при перегреве (3 6) К. Для расширения диапазона регулирования и повышения его устойчивости в системе может быть использовано несколько ТРВ.

Рис. 5. Схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ

Процесс автоматического регулирования давления конденсации хладагента в машинах с конденсаторами воздушного охлаждения осуществляют изменением скорости или расхода охлаждающего воздуха.

Технически его обеспечивают системой жалюзи или поворотных заслонок, использованием вентиляторов с изменяемым углом установки направляющих лопаток, применением двухскоростных электродвигателей, а также периодическим выключением вентиляторов. Изменение скорости или расхода охлаждающего воздуха приводит к изменению коэффициента теплопередачи конденсатора, а следовательно, к

изменению температуры и давления процесса конденсации.

В ряде случаев повышения температуры конденсации добиваются частичным подтоплением поверхности конденсатора жидким

Приборы автоматического регулирования, помимо контроля параметров испарителя и конденсатора, поддерживают заданную температуру воздуха в охлаждаемом помещении, обеспечивают своевременное удаление инея («снеговой шубы») с поверхности испарителя, регулируют уровень масла в маслоотделителях и т.д. Работу системы регулирования сочетают с автоматической защитой, которая включает комплекс мер по безопасной эксплуатации холодильных машин и предупреждает аварийные режимы путем отключения машины.

Система автоматической защиты включает соответствующие датчики (реле защиты и устройства для преобразования импульсов от этих реле в сигнал остановки). В ряде случаев систему защиты дополняют блокировкой, которая исключает повторный пуск машины без устранения причины, вызвавшей срабатывание защиты.

В компрессорных холодильных машинах датчики системы защиты следят за уровнем максимального давления и температуры хладагента на нагнетании компрессора, минимального давления на всасывании, за давлением и температурой масла в системе смазки, за работой электродвигателя, исключающей его перегрузку или короткое замыкание. В систему, автоматической защиты может быть введена световая или звуковая сигнализация, оповещающая о достижении предельного значения контролируемой величины или приближения к опасному режиму работы машины.

3. Классификация и основные элементы

По назначению приборы автоматики можно разделить на четыре основные группы: регулирования, защиты, контроля, сигнализации.

Приборы автоматического регулирования обеспечивают включение или выключение холодильной установки и отдельных ее аппаратов, а также управляют процессами работы. В холодильных установках подвижного состава приборы регулирования осуществляют следующие функции: правильно заполняют испаритель хладагентом (терморегулирующие вентили и др.); поддерживают температуру в охлаждаемых помещениях в заданных интервалах (термостаты, дуостаты); регулируют давление в конденсаторе в заданном интервале (прессостаты); обеспечивают своевременное оттаивание инея с испарителя (прессостаты, программные реле, термостаты); открывают или прекращают подачу жидкого или парообразного хладагента (электромагнитные вентили, обратные клапаны); ограничивают поступление хладагента в компрессор из испарителя (регуляторы давления всасывания).

Приборы автоматической защиты выключают всю холодильную установку или отдельные аппараты при наступлении опасных режимов работы: при достижении предельно допустимого давления нагнетания (прессостаты); при вакууме на стороне всасывания (прессостаты); при падении давления масла в системе смазки компрессора (релеразности давлений); при низкой температуре масла в картере компрессора (термостаты) ; при высокой температуре паров хладагента, сжатых в компрессоре (реле температуры); при перегрузке электродвигателя или коротком замыкании (тепловые реле, автоматические выключатели, плавкие предохранители).

Приборы автоматического контроля осуществляют измерения, а в некоторых случаях и записи определенных параметров работы холодильной установки, например температуры в охлаждаемом помещении (термограф), расхода электроэнергии (электросчетчик), времени работы оборудования (счетчики моточасов) и др. Приборы автоматической сигнализации включают световые или звуковые сигналы при достижении заданного значения контролируемой величины или при приближении к опасному режиму работы машины.

Приборы автоматики состоят из следующих основных частей: чувствительного элемента (датчика), передающего механизма, регулирующего (рабочего) органа, устройства для настройки (задатчика). Чувствительный элемент воспринимает контролируемую величину (температуру, давление, уровень жидкости и т.п.) и преобразует ее в удобный вид энергии для дистанционной передачи. Передающий механизм соединяет чувствительный элемент с регулирующим (рабочим) органом.

Регулирующий орган действует по сигналу чувствительного элемента. В приборах двухпозиционного действия (реле) рабочий орган может занимать только два положения. Например, электрические контакты реле давления (прессостата) или реле температуры (термостата) могут быть замкнуты или разомкнуты, клапан электромагнитного вентиля — закрыт или открыт. В приборах плавного (пропорционального) действия каждому изменению регулируемой величины соответствует перемещение регулирующего органа (например, плавное перемещение клапана регулирующего вентиля при изменении тепловой нагрузки на испаритель). Устройство для настройки прибора устанавливает заданное значение регулируемой или контролируемой величины. Отклонение регулируемой величины, не вызывающее перемещение регулирующего органа, называется зоной нечувствительности, или дифференциалом прибора. Чувствительные элементы приборов давления выполняются в виде сильфонов и мембран. Сильфон представляет собой тонкостенную гофрированную трубку. Изготавливают сильфоны из латуни, бронзы, нержавеющей стали. При изменении давления в сильфоне длина его может значительно изменяться. Мембраны изготавливают в виде круглых эластичных пластин, закрепленных по периметру. Мембраны могут быть упругие (металлические) и мягкие (резиновые, пластмассовые, из прорезиненных тканей).

204 Температурные чувствительные элементы выполняют в виде биметаллических пластин и термочувствительных систем с различными наполнителями. В элементах, основанных на расширении твердых тел при нагревании, температура преобразуется в механическое перемещение (дилатометрические элементы). Перемещение происходит за счет неодинаковых коэффициентов линейного расширения у различных металлов. На рис. 3.6 а, б показаны элементы с двумя металлическими деталями 1 и 2 из разного материала, на рис. 3.6 в, г — чувствительный элемент из биметалла, т.е. из двух слоев металлов, сваренных между собой.

В элементах с тепловым расширением жидкостей используется зависимость изменения объема жидкости от температуры. Датчики, заполненные ртутью (рис. 3.7, а, б), используются для преобразования температуры в электрический сигнал без промежуточной механической системы. Датчик на рис. 3.7, а имеет релейную характеристику, на рис. 3.7, б — плавную. Применявшиеся ранее на рефрижераторных поездах ртутноконтактные датчики температуры оказались недостаточно надежными, так как из-за вибраций и толчков на ходу появлялись разрывы ртутного столба и нарушалась электрическая цепь. Кроме того, ртутно-контактные датчики рассчитаны на малую электрическую мощность сигнала.

Рис. 3.6. Дилатометрические чувствительные элементы

источник